SMART

HyperFuzzy Control System and SuperHyperFuzzy Control System

Authors
  • Takaaki Fujita

    Independent Researcher, Tokyo, Japan
    Author
  • Arif Mehmood

    Department of Mathematics, Institute of Numerical Sciences, Gomal University, Dera Ismail Khan 29050, KPK, Pakistan
    Author
  • Arkan A. Ghaib

    Department of Information Technology, Management Technical College, Southern Technical University, Basrah, 61004, Iraq
    Author
Keywords:
Fuzzy set, HyperFuzzy Set, Fuzzy Control, HyperFuzzy Control, Super- HyperFuzzy Control
Abstract

Uncertainty modeling is fundamental to decision-making across diverse domains, and numerous frameworks—such as Fuzzy Sets, Rough Sets, Hyperrough Sets, Vague Sets, Intuitionistic Fuzzy Sets, Hesitant Fuzzy Sets, Neutrosophic Sets, and Plithogenic Sets—have been developed to capture different facets of imprecision.  Among these extensions are Hyperfuzzy Sets and their recursive generalization, SuperHyperfuzzy Sets, which assign set-valued membership degrees at multiple hierarchical levels.  This paper introduces the concepts of Hyperfuzzy Control Systems and (m,n)-SuperHyperfuzzy Control Systems, showing how they generalize classical fuzzy control by incorporating richer uncertainty structures.  We present rigorous definitions, theoretical properties, and illustrative examples demonstrating their ability to model hierarchical uncertainty in real-world control applications.

Downloads
Download data is not yet available.
References

Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338–353. https://doi.org /10.1016/S0019-9958(65)90241-X

Lunar, M. M. C., & Robles, R. A. (2019). Characterization and structure of a power set graph. International Journal of Advanced Research and Publications, 3(6), 1–4.

Rahmati, M., & Hamidi, M. (2023). Extension of g-algebras to superhyper g-algebras. Neutrosophic Sets and Systems, 55, 557–567. https://fs.unm.edu/NSS/SuperHyperG-Algebras34.pdf

Smarandache, F. (2024). Foundation of superhyperstructure & neutrosophic superhyperstructure. Neutrosophic Sets and Systems, 63(1), 21. https://fs.unm.edu/NSS/SuperHyperStructure.pdf

Fujita, T. (2025a). A reconsideration of the mathematical frameworks for fuzzy and neutrosophic supply chain management (fscm and nscm). Journal of Neutrosophic and Fuzzy Systems (JNFS), 10(01), 14–24. https://doi.org/10.54216/JNFS.100102

Zadeh, L. A. (1996). Fuzzy logic, neural networks, and soft computing. In Fuzzy sets, fuzzy logic, and fuzzy systems: Selected papers by lotfi a zadeh (pp. 775–782).World Scientific. https://doi.org/10.1142/9789814261302 0040

Fujita, T. (2025b). A study on hyperfuzzy hyperrough sets, hyperneutrosophic hyperrough sets, and hypersoft hyperrough sets with applications in cybersecurity. Artificial Intelligence in Cybersecurity, 2, 14–36. https://doi.org/10.61356/j.aics.2025.2501

Fujita, T., & Smarandache, F. (2025). A concise introduction to hyperfuzzy, hyperneutrosophic, hyperplithogenic, hypersoft, and hyperrough sets with practical examples. Neutrosophic Sets and Systems, 80, 609–631. https://doi.org/10.5281/zenodo.14759385

Jun, Y. B., Hur, K.,&Lee, K. J. (2017). Hyperfuzzy subalgebras of bck/bci-algebras. Annals of Fuzzy Mathematics and Informatics. http://www.afmi.or.kr/papers/2018/Vol-15 No-01/PDF/AFMI-15-1(17-28)-H-1709272R2.pdf

Nazari, Z.,&Mosapour, B. (2018). The entropy of hyperfuzzy sets. Journal of Dynamical Systems and Geometric Theories, 16(2), 173–185. https://doi.org/10.1080/1726037X.2018.1436270

Bordbar, H., Bordbar, M. R., Borzooei, R. A., & Jun, Y. B. (2021). N-subalgebras of bck= bcialgebras which are induced from hyperfuzzy structures. Iranian Journal of Mathematical Sciences and Informatics, 16(2), 179–195. https://doi.org/10.29252/ijmsi.16.2.163

Fujita, T. (2025c). Short survey on the hierarchical uncertainty of fuzzy, neutrosophic, and plithogenic sets. Advancing Uncertain Combinatorics through Graphization, Hyperization, and Uncertainization: Fuzzy, Neutrosophic, Soft, Rough, and Beyond, 285.

Fujita, T. (2025d). Advancing uncertain combinatorics through graphization, hyperization, and uncertainization: Fuzzy, neutrosophic, soft, rough, and beyond. Biblio Publishing.

Gerogiannis, V., Papadopoulou, S., & Papageorgiou, E. (2012). Identifying factors of customer satisfaction from smartphones: A fuzzy cognitive map approach. International Conference on Contemporary Marketing Issues (ICCMI), 271.

Gerogiannis, V. C., Papadopoulou, S., & Papageorgiou, E. I. (2012). A fuzzy cognitive map for identifying user satisfaction from smartphones. 2012 16th Panhellenic Conference on Informatics, 156–161. https://doi.org/10.1109/PCi.2012.21

Nieto-Morote, A., & Ruz-Vila, F. (2011). A fuzzy approach to construction project risk assessment. International journal of project management, 29(2), 220–231. https://doi.org/10.1016/j.ijproman.2010.02.002

Tah, J. H., & Carr, V. (2000). A proposal for construction project risk assessment using fuzzy logic. Construction Management & Economics, 18(4), 491–500.

Precup, R.-E., & Hellendoorn, H. (2011). A survey on industrial applications of fuzzy control. Computers in industry, 62(3), 213–226.

Sugeno, M. (1985). An introductory survey of fuzzy control. Information sciences, 36(1-2), 59–83. https://doi.org/10.1016/0020-0255(85)90026-X

Sun, Y. L., & Er, M. J. (2004). Hybrid fuzzy control of robotics systems. IEEE Transactions on Fuzzy Systems, 12(6), 755–765. https://doi.org/10.1109/TFUZZ.2004.836097

Cupertino, F., Giordano, V., Naso, D., & Delfine, L. (2006). Fuzzy control of a mobile robot. IEEE robotics & automation magazine, 13(4), 74–81.

Costa, A., De Gloria, A., Faraboschi, P., Pagni, A., & Rizzotto, G. (2002). Hardware solutions for fuzzy control. Proceedings of the IEEE, 83(3), 422–434. https://doi.org/10.1109/5.364488

Castillo, O., Kutlu, F., & Atan, ¨ O. (2020). Intuitionistic fuzzy control of twin rotor multiple input multiple output systems. Journal of Intelligent & Fuzzy Systems, 38(1), 821–833. https://doi.org/10.3233/JIFS-179451

Hamdy, M., Magdy, M., & Helmy, S. (2021). Control and synchronization for two chua systems based on intuitionistic fuzzy control scheme: A comparative study. Transactions of the Institute of Measurement and Control, 43(7), 1650–1667. https://doi.org/10.1177/0142331220981425

Helmy, S., Magdy, M., & Hamdy, M. (2022). Control in the loop for synchronization of nonlinear chaotic systems via adaptive intuitionistic neuro-fuzzy: A comparative study. Complex & Intelligent Systems, 8(4), 3437–3450. https://doi.org/10.1007/s40747-022-00677-x

Urrea, C., Kern, J.,&Alvarado, J. (2020). Design and evaluation of a newfuzzy control algorithm applied to a manipulator robot. Applied sciences, 10(21), 7482. https://doi.org/10.3390/app10217482

Ke, X., & Zhang, D. (2019). Fuzzy control algorithm for adaptive optical systems. Applied optics, 58(36), 9967–9975. https://doi.org/10.1364/AO.58.009967

N¨urnberger, A., Nauck, D., & Kruse, R. (1999). Neuro-fuzzy control based on the nefcon-model: Recent developments. Soft Computing, 2(4), 168–182. https://doi.org/10.1007/s005000050050

Sandhu, G. S., & Rattan, K. S. (1997). Design of a neuro-fuzzy controller. 1997 IEEE international conference on systems, man, and cybernetics. Computational cybernetics and simulation, 4, 3170–3175. https://doi.org/10.1109/ICSMC.1997.633083

Tang, K.-S., Man, K. F., Chen, G., & Kwong, S. (2001). An optimal fuzzy pid controller. IEEE transactions on industrial electronics, 48(4), 757–765. https://doi.org/10.1109/41.937407

Carvajal, J., Chen, G., & Ogmen, H. (2000). Fuzzy pid controller: Design, performance evaluation, and stability analysis. Information sciences, 123(3-4), 249–270. https://doi.org/10.1016/S0020-0255(99)00127-9

Fujita, T., Mehmood, A., & Ghaib, A. A. (2025). A reconsideration note of the mathematical frameworks for fuzzy and neutrosophic risk management. Management Science Advances, 2(1), 223–238. https://doi.org/10.31181/msa21202523

Radha, R., Mary, A. S. A.,&Smarandache, F. (2021). Quadripartitioned neutrosophic Pythagorean soft set. International Journal of Neutrosophic Science (IJNS) Volume 14, 2021, 11.

Sultana, F., Gulistan, M., Ali, M., Yaqoob, N., Khan, M., Rashid, T., & Ahmed, T. (2023). A study of plithogenic graphs: Applications in spreading coronavirus disease (covid-19) globally. Journal of ambient intelligence and humanized computing, 14(10), 13139–13159. https://doi.org/10.1007/s12652-022-03772-6

Martin, N. (2022). Plithogenic swara-topsis decision making on food processing methods with different normalization techniques. Advances in Decision Making, 69.

Bretto, A. (2013). Hypergraph theory. An introduction.Mathematical Engineering. Cham: Springer, 1. https://doi.org/10.1007/978-3-319-00080-0

Feng, Y., You, H., Zhang, Z., Ji, R., & Gao, Y. (2019). Hypergraph neural networks. Proceedings of the AAAI conference on artificial intelligence, 33(01), 3558–3565. https://arxiv.org/abs/1809.09401

Hamidi, M., Smarandache, F.,&Davneshvar, E. (2022). Spectrum of superhypergraphs via flows. Journal of Mathematics, 2022(1), 9158912. https://doi.org/10.1155/2022/9158912

Smarandache, F. (2020). Extension of hypergraph to n-superhypergraph and to plithogenic nsuperhypergraph, and extension of hyperalgebra to n-ary (classical-/neutro-/anti-) hyperalgebra. Infinite Study.

Cover Image
Published
2025-09-17
Section
Articles
License

Copyright (c) 2025 Takaaki Fujita, Arif Mehmood, Arkan A. Ghaib (Author)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How to Cite

HyperFuzzy Control System and SuperHyperFuzzy Control System. (2025). Smart Multi-Criteria Analytics and Reasoning Technologies, 1(1), 1-21. https://doi.org/10.65069/smart1120252